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Abstract 

Hardware-based trusted computing platforms are intended to overcome many of the problems of 
trust that are prominent in computing systems. In this paper, a result of the Software Engineering 
Institute’s Independent Research and Development Project “Trusted Computing in Extreme Ad-
versarial Environments: Using Trusted Hardware as a Foundation for Cyber Security,” we discuss 
the capabilities and limitations of the Trusted Platform Module (TPM). We describe credential 
storage, device identity, chains of trust, and other techniques for extending hardware-based trust 
to higher levels of software-based infrastructure. We then examine the character of trust and iden-
tify strategies for increasing trust. We show why acceptance of TPM-based trust has been limited 
to date and suggest that broader acceptance will require more focus on traditional trust issues and 
on end-to-end services. 
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1 Background 

This paper is the result of a 2010 Software Engineering Institute’s Independent Research and De-
velopment (IRAD) project “Trusted Computing in Extreme Adversarial Environments: Using 
Trusted Hardware as a Foundation for Cyber Security.” The purpose of the IRAD study is to eva-
luate the promise and limitations of using trusted hardware as a foundation for achieving demon-
strably high assurance of end-to-end security properties of applications executing in extreme ad-
versarial environments.  

In this study, we examine the capabilities and limitations of hardware-based trusted platforms in 
general, and the Trusted Platform Module (TPM) from the perspective of trusted applications in 
particular. Through this examination, we obtain an understanding of the methods recommended 
and used to extend trust to higher levels of infrastructure and application software. We also ex-
amine the nature of trust and trustworthiness and draw some tentative conclusions on why the 
TPM has not yet had the market success one might expect. This report focuses on the TPM and 
trust issues.  

We also examine traditional approaches to trust, as used and known to be effective in standalone 
applications to identify strategies for increasing trust. Comparison of the approaches of hardware-
based trusted computing platforms with the proposed strategies provides insight into the gap be-
tween the promise of trusted computing platforms and the reality of trusted applications. The lat-
ter observations may help explain the limited market acceptance of trusted computing platforms 
and point the way toward more viable approaches from both technical and business perspectives. 
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2 Introduction 

Trustworthiness is a measure of the integrity, ability, competence, and surety of an entity to pro-
vide a service. As the number of security risks in automated and networked systems continues to 
rise, assurance of the trustworthiness of systems becomes increasingly important to safely and 
cost effectively use services involving automation or networks.  

Trust is the degree of confidence (i.e., certainty, reliance, or belief) that one has in the trustwor-
thiness of a person, organization, application, or system to satisfy an individual’s expectations in 
providing a particular service. The degree of confidence depends not only on the trustworthiness 
of the service and its provider, but also on the user’s knowledge of that trustworthiness. One 
should trust only the trustworthy, but that is impossible without evidence of their trustworthiness. 

Issues of trust and of adequate evidence of trustworthiness are complex, difficult, and until recent-
ly, seldom addressed by the developers of automated and network systems [Schneider 1999]. 
They are, however, a critical aspect of everyday human life. Trust involves many risks that must 
be managed. Automated systems and networks introduce additional trust issues, primarily in the 
area of security, that are uncommon in social systems alone. The use of authenticators (passwords, 
tokens, and biometrics), digital signatures, crypto checksums, reputation systems, and digital 
identity management methods, for example, are security mechanisms that are sometimes neces-
sary for trust in automated and networked systems, but do not address the trustworthiness of the 
service providers nor the functionality or quality of the services themselves.  

Hardware-based trusted computer platforms are intended to overcome many of the problems of 
trust that are prominent in computing systems [Smith 2005], [England 2004]. The TPM is a sim-
ple, passive, integrated circuit chip intended to provide several trustworthy security capabilities, to 
be extensible to higher levels of computer software and network infrastructure, and to create a 
foundation for trusted applications [Pearson 2003], [Challener 2008], [Grawrock 2009], [TCG 
2007]. In practice, however, hardware-based trusted computer platforms are rarely used to devel-
op computational or network infrastructure and have had limited market success in end applica-
tions to date, even when the TPM chip is present [Anderson 2003]. 
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3 Trust Platform Module 

The TPM is a hardware chip that is intended to enhance the level of trust that one has in certain 
aspects of computing systems and networks. It is intended to be a trustworthy device for certain 
low-level security services, including hardware-based credential storage, device identity, and 
software integrity. In conjunction with trustworthy software, it is intended to serve as a trustwor-
thy base for trusted infrastructure leading to software applications that are trusted. In general, 
people desire that trust not exceed trustworthiness, recognize that trust can never be complete, and 
need levels of trust adequate for their current purpose (whatever that might be).  

The TPM chip’s simplicity, passiveness, and limited capacity account for its low cost and provide 
confidence that its design and implementation can be trusted. The higher levels of trust expected 
from the TPM and other hardware-based trust platforms are not realizable in software solutions 
alone. For example, a software implementation of key generation and confidential storage of keys 
will not have comparable trust levels that implementing the same capability within a passive chip 
will have. As a hardware device, the TPM is able to offer a more constrained application program 
interface (API) than a software module. Hardware that is more complex or active would have 
lower levels of trust because its trustworthiness would be more difficult to assess and verify.  

3.1 Primitive Operations 

As a simple low-capacity device, the TPM has a small number of primitive operations and limited 
storage. It can perform hashing; generate random numbers and asymmetric cryptographic keys; 
securely store keys (i.e., with confidentiality and integrity); perform asymmetric signing, encryp-
tion, and decryption operations on small blocks of data; and confirm its own identity [TCG 2007]. 
In theory these primitive operations can be extended to almost any well-understood security func-
tion by using a chain of trust, a term for bootstrapping trust in a software architecture that extends 
the trusted security platform to higher and higher levels, one level at a time [Arbaugh 1997].  

3.2 Extending Trust 

To extend trust in security mechanisms beyond the TPM requires functional and quality adequacy 
of the higher level security function being implemented, integrating trust in the software design 
and implementation, and correct implementation of the chains of trust. Each of these three is ad-
dressed below. Note, however, that all three are necessary for any use of the TPM. Any security 
function not built in must ultimately be correctly composed from built-in capabilities. As a pas-
sive device, the TPM can do nothing on its own; every use of the device requires software 
(whether in RAM or ROM), though there are viable architectures where not all of the software 
must be trusted. Each link in the chain of trust must involve a theoretically sound process and cor-
rect implementation of that process.  

3.2.1 Higher Level Security Functions 

The first steps in building higher level security functions are to implement software functions that 
use the TPM primitives to provide public key authentication, integrity measurement, and attesta-
tion. These functions can then be used to ensure that private keys cannot be given away or stolen, 
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that altered code is detected, that only authorized services can use private keys, and that even con-
strained physical attacks are unlikely to obtain encryption keys. The TPM has some inherent ca-
pacity and performance limitations that can be overcome by the systems designer in most cases. 
These cases include implementing symmetric encryption on the computer system’s primary CPU, 
where it has higher performance and can handle large blocks of data; implementing asymmetric 
encryption in software; and using encrypted storage of keys outside the TPM. In each of these 
cases the functionality enabled is based on the security provided by the TPM. These cases are ex-
amples of how developers and advocates of the TPM have done extensive work in demonstrating 
how it is possible to build a multitude of essential security functions from those primitive to the 
TPM. 

3.2.2 Integrating Trust in Software Design and Implementation 

Trust in the functionality and quality attributes of a software application is important independent 
of the security of the infrastructure required to give the user assured access to that functionality. 
Trust issues involve a variety of considerations beyond those of security and are addressed in Sec-
tion 4. Trust issues are important not only in end-user applications, but also in each function of the 
infrastructure and in the software-implemented security functions. The TPM does not provide any 
trust functions beyond those for security (i.e., primarily confidentiality and integrity), nor does the 
community provide advice on how to design or implement trust at higher levels. Trust issues 
beyond security are seen as the responsibility of software authors at each level and for each appli-
cation.  

Leveraging the security functions that the TPM enables requires the software developer to plan 
for appropriate use. As an example, a simple capability enabled by the presence of TPMs in com-
puting devices is their ability to use the TPM as a secure key-store. Asymmetric credentials, such 
as public/private keypairs for certificate-based authentication in a virtual private network (VPN), 
secure sockets layer (SSL), secure shell (SSH), or other protocols can be generated and main-
tained in the TPM. These keys have significantly better protection against attack, as the private 
component of the key never leaves the TPM unencrypted. Without a sophisticated hardware at-
tack, there is simply no way to compromise the actual value of the private key. The TPM further 
provides access control mechanisms for such keys. While sophisticated policies based on the hash 
of code that has been loaded for execution1 are possible, very simple policies based on passwords 
or personal identification numbers (PINs) are also possible. The TPM-based flavors of simple 
mechanisms that rely on the TPM for secure storage have increased security because the TPM 
itself implements dictionary-attack defenses2 by dramatically reducing its response time in the 
presence of repeated incorrect guesses. Offline dictionary attacks3 are prevented by the TPM be-
cause protected keys are stored in such a way that requires cooperation of the TPM to reveal them 

 
1 The TPM chip’s integral storage enables integrity checking of code loaded for execution by comparing the hash 

value of the code to the hash code of an expected version of the code. Any differences, such as if the code has 
been altered or malicious code inserted, will be identified and execution halted. See Dynamics of a Trusted 
Platform: A Building Block Approach [Grawrock 2008] for a complete explanation of integrity checking capabili-
ties.  

2 Dictionary attack refers to guessing key information such as passwords by using programs that test every word in 
the dictionary. A typical defense for this type of attack is to lock down access after a certain number of failed at-
tempts. 

3 An offline dictionary attack is one in which the attacker steals the password file and then tries to guess the pass-
words with no interaction with the system under attack.  
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to the host platform. Thus, an attacker’s best course of action becomes to attempt a hardware at-
tack. This is a very strong security property given the prevalence of network-based attacks. 

Even if TPM-based keys are not integrated into a multitude of existing protocols, there is still sig-
nificant value to be attained by using the TPM to represent the identity of a particular device for a 
particular service. Precisely because the TPM-protected keys never leave the chip unencrypted, a 
keypair can be used to represent the identity of a physical device. Protocols can be enhanced with 
such support and achieve very strong audit mechanisms. For example, if a stolen laptop is used in 
an attempt to access a sensitive network, the identity of that laptop may be ascertained, which can 
enable at least (1) definitively revoking its privileges with respect to the sensitive network and (2) 
helping to identify the time or event during which the laptop was stolen. A potentially effective 
policy for networks that handle sensitive information (whether it be inside the U.S. Department of 
Defense (DoD) or for compliance reasons in a commercial setting) is to allow only known ma-
chines on sensitive networks. TPM-based identities for machines cannot be trivially copied or 
spoofed like software credentials or unprotected hardware identities such as Ethernet MAC ad-
dresses. 

 

3.2.3 Correct Implementation of Chains of Trust 

A chain of trust, discussed more fully in Section 4, is a term used to describe the different trust 
properties in multiple layers of software in a computer system. There exist reasonably complete 
and rigorous processes to ensure that chains of trust are correct. Although the process of establish-
ing and maintaining a chain of trust are theoretically sound, they are difficult and error prone in 
practice. Trust in the resulting software declines with each new level of layered trust, because 
each depends on the trustworthiness of all lower levels and such chains are brittle, i.e., any 
changes such as software updates will result in a broken chain. The prescribed doctrine of trusted 
computing platforms is that platforms must be built bottom up, beginning with an initial root of 
trust for measurement established in the hardware and initiated by a fixed piece of trusted code in 
the BIOS. This code then starts a series of measurements that measures the next code to be ex-
ecuted and extends a platform configuration register (PCR) in the TPM to ensure that an accurate 
and immutable record of the next software layer (link in the chain of trust) is recorded before 
transferring control to that next layer [Sailer 2004]. Control is then transferred to the measured 
code for execution, which, in addition to whatever functionality it otherwise provides, performs 
similar measurement and extension for any code it calls for execution. By this process and subse-
quent verification measurements in the chain of validation-execution-measurement, violations to 
code integrity can be detected. In theory, this process can continue through the many levels of 
system boot and operating system initialization, and perhaps eventually to applications. Even if 
done with extreme care, however, this process alone is unlikely to inspire confidence in the trust-
worthiness of anything as complex as an operating system. Put another way, we may learn what 
code was loaded, but we do not learn anything about the security properties of the loaded code. 

In addition to the static root of trust mechanisms described above, where all software on the plat-
form is measured, other approaches, such as Flicker [McCune 2008], provide protection and attes-
tation capabilities for only a small code module. These approaches make more direct use of the 
TPM to provide application-level security functionality and are also discussed in Section 4. 
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4 Data Protection, Device Identity, and Chains of Trust 

In this section we discuss three types of system security features that can be enabled with TPMs. 
The first two, data protection and device identity, are readily available and can be deployed today. 
The third, chains of trust, enjoys some limited deployment as part of Microsoft BitLocker and is 
readily available as an open source prototype, but currently lacks full ecosystem support from the 
private sector. Increased deployment of TPMs for data protection and device identity today will 
reduce vendors’ barriers to entry and adoption if and when chain-of-trust solutions become avail-
able. 

4.1 Data Protection 

4.1.1 Microsoft BitLocker 

Microsoft’s BitLocker is a tool for full-disk encryption, but it optionally supports authorization 
that involves the TPM. With TPM-based authorization, portions of the Windows loader and ker-
nel that execute during system initialization are measured and extended in the TPM’s platform 
configuration registers (PCRs). These PCR values can be used to gate access to the TPM-based 
master key that must be available to fully decrypt the system’s hard drive. This architecture de-
rives security advantages from these two characteristics:  

1. The TPM-based private key will never be available in the clear off-chip and is thus less sus-
ceptible to certain forms of software-based theft than a solely password-based key.  

2. The software measurement values in the PCRs enable straightforward detection of certain 
forms of malicious modification to the early Windows software stack.  

BitLocker is noteworthy in that it makes use of very specific TPM interfaces and provides a con-
cise, useful property. 

4.1.2 Self-Encrypting Disks 

Many drive manufacturers now offer self-encrypting disk drives (SEDs). These drives implement 
encryption algorithms in their firmware and are able to operate at line speed, thereby eliminating 
any performance reasons to avoid full-disk encryption. Several companies offer management so-
lutions for these drives, enabling enterprise IT departments to remain ultimately in charge of 
access to the data on these drives. Thus, interesting new architectures become possible, such as 
corporate laptops that must phone-home to decrypt sensitive files. Lost or stolen laptops can be 
de-privileged, so that even an attacker who guesses the user’s password will be unable to decrypt 
the drive. Ultimately, access to encrypted partitions is based on some form of secret or credential. 
TPM-based credentials can help to ensure that critical data can be made accessible to only ap-
proved software configurations. 
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4.2 Device Identity 

4.2.1 Only Known Machines on Sensitive Networks 

Credentials stored in the TPM have hardware-based protection for their private keys. This is an 
excellent form of strong device identity and can be used to greatly strengthen protocols used for 
network access control. For example, existing network access control systems may be based on 
only a computer system’s Ethernet MAC address, which can be trivially spoofed by malicious 
software. Other existing solutions may use cryptographic credentials, but those credentials are 
stored as files on the system’s hard drive and handled by software where they may be exposed to 
malware or malicious users. With the private keys stored safely in the TPM, the chances of a 
software-based attack leaking a private key are effectively eliminated. Sensitive networks should 
implement an admission control policy based on strong, hardware-backed device identity. Ma-
chines that cannot pass this form of authentication should not be allowed on sensitive networks. A 
seemingly simple policy of allowing only known machines on a network can prevent the introduc-
tion of unexpected or invalid system configurations into sensitive networks and effectively close 
off what are today relatively easy avenues of attack. 

4.3 Chains of Trust 

As previously stated in section 3, trust can be extended into software by building on the primitives 
associated with the TPM. In this section, we discuss several strategies available today that leve-
rage trusted computing technologies to increase the robustness and trustworthiness of commodity 
computing systems. We first introduce the notion of a chain of trust and remote attestation based 
on such a chain. We also discuss some more general design concepts that may be of interest to the 
developers of next-generation systems who wish to take advantage of trusted computing technol-
ogies to strengthen their applications against many common types of attack. 

4.3.1 Chain of Trust 

A chain of trust is a term used to describe the trust dependencies in a computer system consisting 
of multiple layers of software that have different temporal and spatial (e.g., central processing unit 
[CPU] privilege rings) trust properties. In TPM-style designs, the chain of trust is generally mani-
fested as a sequence of cryptographic hash operations performed over executable code, configura-
tion information, and data of interest.  

4.3.2 Static Root of Trust 

A static root of trust is instantiated when the TPM is activated by the platform owner and is in-
itiated when a system is first powered on. It is intended to persist for the entire boot cycle. For the 
integrity of the chain to remain intact, all software must be measured prior to its being executed. 
Measurement involves performing a cryptographic hash over the item of interest and then extend-
ing the chain of trust with this new measurement. An aggregate value summarizing the chain re-
sides in the platform’s TPM chip. 

There are several drawbacks to integrity measurement architectures based on a static root of trust. 
The first is code size. Even if the measurement chain is unbroken, the sheer volume of code that 
executes on a typical system today renders its security properties unverifiable. The second is the 
need to maintain an unbroken measurement chain. If any code executes that was not first meas-
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ured, the chain breaks. Likewise, if a program interprets a configuration file that is not measured, 
then the chain is broken. Even data that is processed by the program may need to be measured to 
be fully able to conclude whether the system is in a trustworthy state. Thus, static root of trust is 
most valuable for systems that perform very well-defined, specific tasks. A VPN gateway is an 
example of such a system, i.e., the static chain of trust begins in the firmware and extends through 
the BIOS to the boot loader, then through the operating system (OS) kernel and the minimum set 
of services required to provide a VPN service. A virtualization-based platform that has the ability 
to execute multiple, distinct virtual machine images may use static root of trust to verify the inte-
grity of the hypervisor and associated virtualization infrastructure. 

4.3.3 Dynamic Root of Trust 

A dynamic root of trust (DRT) differs from a static root of trust in that it can be created on-
demand, at any time. Platforms supporting dynamic root of trust have more sophisticated CPU 
and chipset extensions to support the creation of an isolated execution environment. A dynamic 
root of trust atomically reinitializes the CPU to a known-good state, reconfigures the system’s 
memory management unit to isolate certain regions of memory from potentially malicious direct 
memory access (DMA) capable peripherals, sends a special signal to the platform’s TPM chip to 
indicate a DRT operation, and sends the contents of the code to be executed inside the isolated 
environment to the TPM to be measured (for use in subsequent integrity checks or data sealing 
operations). In this case, the chain of trust for the new code to be measured is quite short. AMD 
and Intel (the leading x86-class CPU manufacturers) implement this feature differently, but in 
both cases there are fewer than ten measurements to process, as opposed to hundreds or thousands 
that are required to implement static root of trust architectures. 

4.3.4 Remote Attestation 

TPM-equipped computer systems with software that is architected to accumulate measurements 
into their TPM’s PCRs can invoke network protocols to perform remote attestation. An attestation 
is a digitally signed set of cryptographic hash values that describe the software configuration of 
the system of interest. The signing key used to produce an attestation resides exclusively in the 
TPM on the system of interest, so that the recipient of an attestation can be certain as to the origi-
nator of the attestation message. This enables the remote verifier to cross-reference the received 
attestation with a database of known-good or expected values, and to potentially draw conclusions 
as to the trustworthiness of the system of interest. A simple use case may be the conclusion that 
the system is equipped with current (patched), best-known versions of the intended applications. 
A more sophisticated use case may conclude that the system is executing precisely the intended 
software configuration, where the intended configuration was selected only after rigorous formal 
analysis of the constituent applications and the trust implications of their composition on a single 
system. 

4.3.5 Flicker 

Flicker is a research system developed at Carnegie Mellon University that is applicable on sys-
tems that offer support for dynamic root of trust. Flicker enables developers to write applications 
that can manage security-sensitive operations in hardware-enforced isolation from all other code 
and devices on the system, and to generate attestations that can potentially convince an external 
party or remote system that this was the case. While Flicker is a platform for writing applications 
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and not an end-user product, developers who are writing applications that have important data to 
protect may be able to significantly harden their applications by leveraging the Flicker architec-
ture or similar designs. 
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5 Implications for Use of TPM 

Trusted security platforms and the TPM in particular offer a level of security capability that can-
not be achieved in software alone. It is inexpensive and readily available. It is installed in many 
computer systems and sometimes enabled by the manufacturer. The hardware itself is generally 
trusted by the developers who use it. 

Despite these desirable attributes, in practice the TPM is rarely used even when the chip is 
present. It is rarely used in the development of computational or network infrastructure and has 
had limited market penetration in end-user applications. Enabling installed chips may be inconve-
nient or difficult, but a more likely explanation is a lack of vendor-provided software to leverage 
the TPM. Software development at very low levels of the operating system is required for vendor-
provided software to leverage the capabilities of the TPM. Such development requires operating 
system, systems programming, and security expertise possessed by few developers. These re-
quirements provide significant technical and cost barriers not only for end users but also for appli-
cation developers.  

Furthermore, end users do not seek low-level security functions. They desire useful end-to-end 
security capabilities that can be used without additional software development. Device identity, 
self-encrypting disks, and BitLocker are examples of successful user-level security capabilities 
that can be used and adopted today. 

At the same time, end users always need trustworthy applications. When applications involve 
software infrastructure (including operating systems or libraries) in their implementations or in-
termediaries (including software or communications) in delivery of their services, issues of identi-
ty of the services and integrity of communications arise. Users care about the trustworthiness of 
the applications they use. They care about the integrity, ability, competence, availability, and su-
rety of a system to provide expected services. They do not care nor need to know how security is 
achieved within their applications. Exploiting the TPM to achieve trustworthy products should be 
the responsibility of infrastructure and application providers. As long as that responsibility is left 
to users, the TPM is not likely to receive its widespread use.  

Issues of infrastructure security and use of the TPM are only a small part of users’ concerns for 
trust. Creditable evidence of trustworthiness of services, automated support for assessing and va-
lidating trust, and an effective set of strategies for increasing and maintaining trust and trustwor-
thiness are needed. 

Because IT infrastructure often evolves organically without predetermined knowledge of its end 
use, the infrastructure is often at odds with the effective use of the TPM. Effective use of hard-
ware-based roots of trust requires a clear vision of full-system architecture as it relates to the use 
of security to enable end-to-end trust. Broader acceptance and more effective business models for 
exploiting trusted computing platforms will also require more focus on traditional trust issues and 
on end-to-end services. From a trust perspective, the TPM could help end users by allowing appli-
cations to be treated more as black boxes. 
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6 Implications for Trust 

TPM-enabled hardware platforms are readily available but seldom used, with an estimated 
250,000,000 installed but less than one percent activated [Sprague 2010]. As the community rea-
lizes the TPM is capable of enhancing some, but not all, measures of a systems’ trustworthiness, 
there is a need to investigate the nature of the trust that is either not supported or not easily ex-
ploited by the capability provided by the TPM, and to identify those areas that should be further 
addressed.  

Trust requires assessment of evidence of trustworthiness combined with levels of confidence in 
those assessments. Without confident assessment of trustworthiness, there is nothing meaningful 
to compare with our suppositions about needs. An appropriate combination of well-reasoned 
needs and justified trust can make the difference in survival, safety, and cost effectiveness in any 
activity.  

The service provider can provide guidance in the form of claims of functionality and quality, and 
may even provide evidence of trustworthiness, but the services actually used may or may not be 
among those claimed. The user of a service cares about the trustworthiness of those aspects of a 
service that he or she depends on, uses, or intends to use. Without a better option, the user deter-
mines what functionality and quality can be trusted using an intuitive assessment and validation 
process that often yields results different from those claimed. This is, for example, why program-
mers often exploit software bugs or undocumented APIs to obtain functionality or quality that is 
otherwise difficult to obtain. The user cares about the integrity, ability, competence, and surety of 
an entity to provide a service and can be quite upset when a service is changed (even if it is a bug 
fix). This further illustrates users’ focus on their primary task. When users are comfortable getting 
their work done with a buggy program, any change may be disruptive or unwelcomed. From the 
point of view of trust, it is the user, and not the service provider, who determines what constitutes 
an adequately trustworthy service. 

Until recently, the products and services that users trust have often been ones for which they are 
in direct contact with their providers. Sometimes there are infrastructure and other intermediating 
services that must be trusted. The use of infrastructure, communications, or other intermediating 
services offers the possibility of altered functionality or degraded quality of a service, typically in 
the form of corrupted information or interrupted service. Service providers often view such issues 
as outside their control or concern. Infrastructure providers (such as OS and communication pro-
viders) see them as security issues (i.e., information integrity and availability of service, respec-
tively). Users prefer to view a remote service together with any intervening infrastructure as a 
single combined service. Their trust is in the resulting end-to-end service and not in its individual 
components. For example, a user might prefer a less capable end service with reliable communi-
cations over a more capable end service with frequent data corruption.  

Because trust often involves services used or provided by humans, even in automated and net-
worked systems, any effective solution to issues of trust must encompass the human side of the 
trust equation, i.e. the socio-technical systems, properties, and issues. At the same time, any solu-
tion that includes multiple layers of software or hardware or is implemented from several auto-
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mated components must address the interdependent issues of trust among the automated compo-
nents.  

Problems with infrastructure (including network communications, operating systems, and other 
software layers), where the infrastructure is not the end service, are most commonly viewed as 
security issues. Integrity of information and availability of services (together with confidentiality) 
are the defining focus of security. In automated and networked systems, there are always infra-
structure or other intermediating services, making security a critical factor in such systems. That 
the TPM is intended to provide security services at the platform (i.e., infrastructure) level indi-
cates this recognition. Like other services, security services can never be fully assured and require 
trust beyond that associated with the end service.  

Ultimately, trust assessment is the responsibility of the end user, whether the end user of an appli-
cation, an application using the OS and application components, or higher-level OS functions us-
ing lower-level OS functions. The cost of assessing the trustworthiness of a service is often pro-
portional to the complexity of the service as seen by the end user, rather than the complexity of its 
implementation. Consequently, requiring the end user to evaluate the trustworthiness of a ser-
vice’s components to determine the trustworthiness of the service generally imposes additional 
cost and effort on the end user. In particular, the user cares about whether a service uses a hard-
ware-based root of trust (only because its absence ensures certain vulnerability), but from a trust 
perspective does not care whether a vulnerability results from poor use of a hardware root of trust 
or from its absence. 
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7 Future Directions 

The business model that has been successful for engaging the TPM is to provide end-to-end secu-
rity products that happen to leverage TPMs. Other models have not been widely adopted and if 
fully realized would result only in security products, not necessarily more secure or trustworthy 
applications. A business model of potentially greater effectiveness is the use of the TPM internal 
to applications, products, or systems to maintain and preserve trustworthiness that could otherwise 
be undermined by security flaws in lower-level infrastructure. This approach could also be used to 
provide more secure and trustworthy infrastructure. Research is needed to define and assess busi-
ness strategies for broader and more effective exploitation of hardware-based trusted platforms. 
As the installed base of TPMs continues to grow, there are more and more opportunities for pri-
vate industry to offer applications that are inherently more trustworthy by leveraging the TPM. 

Trust is of critical importance in all human activity. Without trust, we can accomplish nothing. 
With unjustified trust, nothing can be adequately assured, safe, or efficient. Automated systems 
and networks impose additional problems of trust, but do not traditionally provide adequate sup-
port for trust. Automated support for trust is essential for effective use of automated systems and 
networks. The TPM and other hardware-based trust mechanisms are a step in the right direction 
but inadequate in current practice. While they provide automated support for certain security as-
pects of trust, issues of trust go far beyond security. There is a need for investigation and under-
standing of the potential role of technology in supporting other aspects of trust.  

Trust could be an important new domain of computational and network technology. Obtaining 
cost-effective solutions involving automated and networked systems is a longstanding problem in 
information assurance, infrastructure protection, software engineering, and everyday life. Solu-
tions require justified confidence in the integrity, ability, competence, and surety of an entity to 
provide needed services of adequate functionality and quality where and when needed. 

Support for trust will require more rigorous understanding of trust and trustworthiness, effective 
strategies for achieving trustworthiness and assessing trust, and development of automated tools 
for trust. Research in these areas will likely borrow from other domains with overlapping con-
cerns. These domains include, most conspicuously, security, survivability, dependability, emer-
gent behavior, and modeling and simulation.  

The security, survivability, and dependability communities each provide partial solutions. Securi-
ty, with its focus on availability, integrity, and confidentiality, is recognized as an often critical 
aspect of solutions, but security methods are seldom tied to the specific needs of the application. 
Security cannot provide complete solutions; it is at best inefficient when applied without adapta-
tion to changing circumstances and specific needs, and when in a one-size-fits-all form can inter-
fere with work and undermine effective solutions.  

Survivability [Lipson 2000] was an attempt to overcome the shortcomings of fortress model secu-
rity by focusing on the end goals of mission satisfaction, survivability, and system evolution [Lip-
son 2006], and the security technologies that contribute to those end goals. Survivability never 
gained traction because security responsibilities were entrenched in organizations devoid of re-
sponsibility for mission success, because there was a dearth of both survivability methods and 
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promising research, and because, like security, survivability does not offer the potential for com-
plete solutions. 

Dependability is an all-encompassing conglomeration of technologies promising complete solu-
tions to any problem in automated systems, but only in an idealized world that lacks competition, 
intelligent adversaries, and need for adaptation and evolution [Avizienis 2001]. It seeks correct 
solutions and disdains informal and empirical approaches.  

Emergent behavior is inherent in all complex and networked systems [Fisher 1999]. Trusted solu-
tions cannot be effective without recognizing and addressing emergent effects. In network securi-
ty applications, emergent behavior may include cascade effects, epidemics, inevitable accidents, 
phase shifts, and sometimes even new emergent domains with their own defining properties. It 
may also be possible to exploit emergent effects [Fisher 2006] to enable or encourage trustworthi-
ness.  

Modeling and simulation are essential research tools in any domain that is complex, safety criti-
cal, or prohibitively expensive to experiment with real systems [Anderson 2006]. Modeling and 
simulation are needed for the design of new systems and analysis of existing systems. Depending 
on the nature of the questions being asked, discrete event simulations, dynamic simulations, or 
systems dynamics (probabilistic) simulations may be most appropriate. The more that models can 
be abstractly specified and reused [Fisher 2010], the more simulations can be separated from 
models, and the more models and simulations are one-to-one with the systems being modeled, the 
less error prone and more accurate will be the simulation results.  

Finally, EAEs involving antagonists with nation-state levels of resources and malicious intent 
provide an ideal context for testing and validating research results in the above identified do-
mains. They illustrate the importance not only of resisting attacks and mitigating their effects, but 
also of discovering compromises when they occur and continuously evolving systems to more 
effective and trustworthy solutions. They also point out that, in the long run, victory is impossible 
without a sustainable asymmetric advantage. 
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8 Summary and Conclusions 

The TPM is a simple, passive, integrated circuit chip intended to serve as a hardware root of trust 
for trusted infrastructure leading to software applications that are trusted. It is an inexpensive 
enabler for credential storage, device identity, and trusted applications and provides security ca-
pabilities that cannot be provided by software alone with the same degree of confidence. The 
TPM derives both trust and trustworthiness from its simple passive character. A more complex 
device, an active one with general purpose computing capabilities, or one that shares registers 
with a CPU could not engender similar levels of trust.  

Although the TPM is generally trusted by developers who use it, to date it is rarely integrated 
within the computational or network infrastructure, and has had limited market success in end 
applications even when the chip is present. To understand why, we examined the methods rec-
ommended and used for extending trust from the TPM to higher levels of application software. 
Building provably correct chains of trust from BIOS through several levels of operating systems 
and into applications is theoretically sound, but is a tedious and brittle process that must be redone 
whenever any software along the way changes. More practical methods are used but with in-
creased vulnerabilities and often lower levels of trust. The measurement technique used in con-
junction with the TPM is vulnerable because it cannot detect changes made and restored between 
measurements. Neither does measurement provide protection for mutable storage.  

A viable business model for exploiting trusted platform technology in a general purpose platform 
has not yet emerged. However, as the level of deployed TPMs increases, so do the opportunities 
for commercial products dependent on the existence of deployed TPMs. A key appears to be inte-
gration and support by operating systems and application use of the resulting APIs. As a practical 
matter, applications developers and end users will not leverage the TPM unless its functionality is 
easily accessible. They cannot be expected to develop the chains of trusted software required at 
the operating system level. More encouraging are increased use of TPM chips in certain dedicated 
security applications such as Microsoft BitLocker, storage of PKI private keys and other creden-
tials (e.g., biometric identifiers), and potentially secure machine identities on sensitive networks. 
Part of the problem may be that without a large installed base of TPMs, there is little incentive for 
application developers, and without developers’ demand, there is little incentive for the OS to 
support them or for more systems to install them. The implication to DoD and others with a cur-
rently large installed base of TPMs is that the majority of those already deployed will unlikely be 
used without a critical mass of installations that triggers a broader market of applications and OS 
support. Price Waterhouse Coopers’ recent decision to enable TPM-based credentials for 150,000 
users [Messmer 2010] may be an indication of this trend. 

There is also a need for hardware support for security beyond that provided by currently available 
trusted platform devices. The potential and realized benefits of the TPM derive from the ability to 
ensure integrity of information, processes, or identity either by physical isolation (e.g., key sto-
rage in the TPM) or logical isolation (e.g., encrypted communication). Hardware support for iso-
lation of storage and communication is needed at many levels, including CPU register sharing 
through task switches, shared caches, uninitialized portions of memory pages, and DMA access. 
Hardware could assist operating systems isolating applications, eliminating security vulnerabili-
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ties inherent in current CPU architectures, and providing user-level security functions that are eas-
ily accessible through APIs. Hardware mechanisms to support dynamic roots of trust, to eliminate 
software intervention at BIOS and the lowest levels of the OS, to provide immutable storage as an 
alternative to measurement, and to facilitate logically atomic sequences of operations have the 
promise to make chains of trust less brittle and more trustworthy. 

Our effort also looked at the character of trust and trustworthiness. Trusted platform technologies 
are bottom-up in character and in the limit can provide only a secure platform for needed end-to-
end trusted solutions. Although infrastructure security is critical to any trust context that depends 
on infrastructure, information technology also is needed to enable and support trustworthiness and 
trust in end-user applications and services. While trust and trustworthiness have been widely ex-
ploited in other domains, they have received little attention in the world of automated and net-
worked systems.  

Research is needed to develop trust technologies applicable to automated systems. Trust technol-
ogy has the potential to overcome existing limitations of survivability, security, and dependability. 
An effective trust technology will focus on mission fulfillment, survivability, and evolution of 
automated and networked systems. It will employ security methods but only when and where they 
are cost effectively needed. It will embrace many of the quality objectives of dependability but 
with greater adaptability and realism. It will seek practical cooperative solutions that are appropri-
ate for competitive and adversarial environments. It will focus on end-to-end solutions specialized 
to particular needs. It will emulate and adapt proven trust methods from everyday life. 
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